RT3D
(Version 1.0)

A Modular Computer Code for Simulating Reactive Multi-species Transport in 3-Dimensional Groundwater Systems

By T. P. Clement

Prepared for
The U.S. Department of Energy
Under Contract DE-AC06-76RLO 1830

Pacific Northwest National Laboratory
Richland, Washington 99352.
Operated for the U.S. Department of Energy
By Battelle Memorial Institute.
TABLE OF CONTENTS

MATHEMATICAL MODEL ... 7
- Governing Equations ... 7
- Numerical Solution ... 8

INPUT/OUTPUT DATA STRUCTURE .. 11
- Differences between RT3D and MT3D Input Data ... 11
 - Basic Transport Package (BTN) File .. 11
 - Source-Sink Mixing (SSM) File .. 12
 - RT3D Reaction (RCT) File .. 14
 - RT3D Super File ... 17
- Details of RT3D Output Files .. 18

DETAILS OF REACTION MODULES AVAILABLE IN RT3D 1.0 ... 19
- Module 1: Instantaneous Aerobic Decay of BTEX ... 19
- Module 2: Instantaneous Degradation of BTEX using Multiple Electron Acceptors 20
- Module 3: Kinetic-Limited Degradation of BTEX using Multiple Electron Acceptors 23
- Module 4: Rate-Limited Sorption Reactions .. 27
- Module 5: Double Monod Model ... 28
- Module 6: Sequential Decay Reactions ... 31
- Module 7: Aerobic/Aerobic Model for PCE/TCE Degradation ... 33
- Module 8: Under construction ... 36
- Module 9: Under construction ... 36
- Module 10: User-Defined Reaction Module .. 37

MODFLOW TO BE USED WITH RT3D .. 37

EXAMPLE PROBLEMS ... 38
<table>
<thead>
<tr>
<th>Example 1: Using Reaction Module #1</th>
<th>Example 2: User-defined Reaction Module (Module # 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Statement</td>
<td>Required Background</td>
</tr>
<tr>
<td>Input Data Set</td>
<td>Problem Definition</td>
</tr>
<tr>
<td>RT3D Output Results</td>
<td>Developing a New Reaction Module</td>
</tr>
<tr>
<td></td>
<td>Compiling a Reaction Module</td>
</tr>
<tr>
<td></td>
<td>Testing and Debugging a Reaction Module</td>
</tr>
<tr>
<td></td>
<td>Running RT3DBAT1</td>
</tr>
<tr>
<td></td>
<td>Viewing RT3DBAT1 Results</td>
</tr>
<tr>
<td></td>
<td>Input Data Set</td>
</tr>
<tr>
<td></td>
<td>RT3D Output Results</td>
</tr>
<tr>
<td></td>
<td>Generalized User-Defined Reaction Module</td>
</tr>
<tr>
<td></td>
<td>Special Instructions for Unix users</td>
</tr>
</tbody>
</table>

REFERENCES
Acknowledgments

Funding Support

Funding support for RT3D(v1.0) code development efforts was provided, in part, by the office of Technology Development within the Department of Energy’s Office of Environmental Management, under the “Plume Focus Area” and the “Subsurface Contamination Focus Area.” The RT3D code was originally developed for the Remediation Technology Development Forum (RTDF), with financial support from a DOE project that provided microbial characterization research and groundwater-modeling support to the bioremediation of chlorinated solvents consortium of the RTDF.

Technical Support

Dr. T. Prabhakar Clement, principal investigator of the project at the Battelle Pacific Northwest National Laboratory (PNNL), developed the design concepts for the RT3D computer code. Dr. Clement developed RT3Dv1 from MT3D_DoD_1.5 (a public domain version of MT3D developed by Dr. Chunmiao Zheng at the University of Alabama). Several researchers within PNNL and other organizations provided technical support during various phases of this project: Dr. Chunmiao Zheng, Department of Geology, University of Alabama, provided technical support for solving several DoD_1.5 MT3D-related code modification issues; Dr. Yunwei Sun, Department of Chemical Engineering at Washington State University, provided debugging and coding support for developing a prototype version, and a pre-processor MT2RT; Dr. Brian S. Hooker (PNNL) provided support for developing reaction expressions for hydrocarbon and chlorinated solvent degradation models; Christian D. Johnson (PNNL) provided documentation and code testing support; Dr. James N. Petersen, Department of Chemical Engineering at Washington State University, provided debugging support for developing a prototype version and the MT2RT code. In addition, Dr. Clement also benefited from the helpful suggestions of several other researchers; those of Dr. Ashok Chilakapati (PNNL), Dr.
Rodney Skeen (PNNL), and Dr. Norman Jones of Brigham Young University are particularly acknowledged.

LICENSE AND COPYRIGHT INFORMATION

Like any other literary work, computer programs are protected by copyright. The RT3D (version 1.0) code and its technical contents are currently under copyright review. Unauthorized reproduction or distribution of this computer code, or any portion of it, is not permitted. Users can, however, modify the code and use it for solving a specific problem. But they are not permitted to resell or redistribute a modified version of RT3D (or any portion of RT3D) directly or via computer bulletin boards, web pages, or other publicly accessible archives.

DISCLAIMER OF WARRANTY

RT3D computer code is provided without any warranty. We make no warranties, express or implied, that the RT3D code is free of errors or whether it will meet your need for solving a particular problem. You use the code at your own risk. The authors disclaim all liability for direct or consequential damage resulting from your use of the code.

For other Information Please Contact:
Prabhakar Clement, Ph.D., P.E.
Senior Development Engineer
Mail stop: K2-10
Battelle Pacific Northwest National Laboratory
Richland, WA 99352.
rt3d@pnl.gov

For recent updates:
http://bioprocess.pnl.gov/rt3d.htm
INTRODUCTION

RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the U.S. Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD_1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW (McDonald and Harbaugh, 1988) for computing spatial and temporal variations in groundwater head distribution.

The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites (Clement and Johnson 1998; Lu et al., 1998). As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments (Johnson et al. 1998). The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions (Clement et al., 1998; Sun and Clement, 1998; Sun et al. 1998). The code is currently being used to model field-scale natural attenuation at multiple sites.

The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D v1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems.

This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in using the MODFLOW and MT3D computer codes and must be familiar with their input/output data structure.
MATHEMATICAL MODEL

Governing Equations

The general macroscopic equations describing the fate and transport of aqueous- and solid-phase species, respectively, in multi-dimensional saturated porous media are written as:

\[
\frac{\partial C_k}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial C_k}{\partial x_j} \right) - \frac{\partial}{\partial x_i} \left(v_i C_k \right) + \frac{q_s C_k}{\phi} + r_c, \text{ where } k = 1, 2, \ldots, m
\]

(1)

\[
\frac{d \tilde{C}_{im}}{dt} = \tilde{r}_c, \text{ where, } im = 1, 2, \ldots, (n - m)
\]

(2)

where \(n \) is the total number of species, \(m \) is the total number of aqueous-phase (mobile) species (thus, \(n \) minus \(m \) is the total number of solid-phase or immobile species), \(C_k \) is the aqueous-phase concentration of the \(k \)th species \([\text{ML}^{-3}]\), \(\tilde{C}_{im} \) is the solid-phase concentration of the \(im \)th species [either \(\text{MM}^{-1} \) (contaminant mass per unit mass of porous media) or \(\text{ML}^{-3} \) (contaminant mass per unit aqeous-phase volume) unit basis can be used], \(D_{ij} \) is the hydrodynamic dispersion coefficient \([\text{L}^2\text{T}^{-1}]\), \(v \) is the pore velocity \([\text{LT}^{-1}]\), \(\phi \) is the soil porosity, \(q_s \) is the volumetric flux of water per unit volume of aquifer representing sources and sinks \([\text{T}^{-1}]\), \(C_s \) is the concentration of source/sink \([\text{ML}^{-3}]\), \(r_c \) represents the rate of all reactions that occur in the aqueous phase \([\text{ML}^3\text{T}^{-1}]\), and \(\tilde{r}_c \) represents the rate of all reactions that occur in the soil-phase [either \(\text{MM}^{-1}\text{T}^{-1} \) or \(\text{ML}^3\text{T}^{-1} \) can be used].

Saturated groundwater flow velocities are calculated from the hydraulic-head values that are computed by solving a three-dimensional groundwater flow model. The flow equations used are (Zheng, 1990):

\[
S_c \frac{\partial h}{\partial t} = \frac{\partial}{\partial x_i} \left(K_n \frac{\partial h}{\partial x_i} \right) + q_s
\]

(3)
where \(h \) is the hydraulic head \([\text{L}]\), \(S_s \) is the specific storage coefficient \([\text{L}^{-1}]\), and \(K_{ii} \) are the principal components of the hydraulic conductivity tensor \([\text{LT}^{-1}]\) (non-principal components are assumed to be zero). Solution of the flow model, with appropriate boundary and initial conditions, is accomplished using the USGS flow code MODFLOW (McDonald and Harbaugh, 1988).

Numerical Solution

RT3D code was developed to solve the multi-species reactive transport equations (1) and (2). The code utilizes a reaction operator-split (OS) numerical strategy to solve any number of coupled transport equations [of the form (1) and (2)]. Previously, Walter et al. (1994) have successfully used a similar OS approach to solve multi-component transport with geochemical reactions. Clement et al. (1996a) used the OS strategy to solve a biologically reactive flow problem in a radial system. Valocchi and Malmstead (1992) and Kaluarachchi and Morshed (1995) have noted that splitting the reaction terms using the standard OS strategy may have numerical limitations. They recommended an improved alternating OS strategy that may yield more accurate numerical results. However, Barry et al. (1995) states that the improvement provided by the alternating OS may not be applicable for multi-component nonlinear problems. They also demonstrated the efficiency of the standard OS approach by solving a two-species reactive transport problem. In this work, we use a standard OS strategy (sequential non-iterative approach), similar to the one used by Zheng (1990), to develop a general numerical solution scheme for solving the coupled partial/ordinary differential equations (1) and (2).

Employing the OS strategy, the mobile species transport equation (1) is first divided into four distinct equations: the advection equation,
\[\frac{\partial C}{\partial t} = \frac{\partial (v_i C)}{\partial x_i} \] \hspace{1cm} (5)

the dispersion equation,

\[\frac{\partial C}{\partial t} = \frac{\partial}{\partial x_i} \left(D_i \frac{\partial C}{\partial x_i} \right) \] \hspace{1cm} (6)

the source/sink-mixing equation,

\[\frac{\partial C}{\partial t} = \frac{q_s}{\phi} C_s \] \hspace{1cm} (7)

and, the reaction equation,

\[\frac{dC}{dt} = r \] \hspace{1cm} (8)

where the term \(r \) represents all possible reaction terms that appear in a typical mobile-species transport equation. Note that in a typical immobile species equation [of the form (2)], the advection, dispersion, and source-sink mixing terms are zero and only the reaction term exists.

The EPA code MT3D uses a similar OS approach to solve a mathematical model of the form of equation (1) that describes single-species transport with first-order reaction (Zheng, 1990). MT3D is coded into four packages, which are used to sequentially solve the advection equation (5), dispersion equation (6), source-sink mixing equation (7), and single-species reaction equation (8). The advection equation can be solved by the method of characteristics, a modified method of characteristics, a hybrid method of characteristics, or by the upstream finite-difference solution scheme (Zheng, 1990). The dispersion and source-sink mixing packages use explicit finite-difference approximations.

RT3D utilizes all the original transport routines available in MT3D to solve the advection-dispersion problem. The routines are invoked by RT3D multiple times to compute the transport of multiple mobile species. The original MT3D reaction solver (an explicit solver) is replaced in RT3D by a new reaction module that has an improved implicit reaction solver. Appropriate code modifications were also implemented to input multiple initial and boundary conditions and multi-species reaction information.
The logical steps involved in the numerical solution procedure are illustrated in Figure 1. As shown in the figure, the OS strategy helps solve the complex coupled reactive transport system in a modular fashion. The solution algorithm initially solves the advection, dispersion and source-sink mixing steps for all mobile components for a transport time step Δt. The length of the transport step is restricted by the constraints posed by the advection, dispersion, and source-sink mixing solvers (Zheng, 1990). After solving the transport for a single time step, the coupled reaction equations are solved implicitly by using a differential equation solver. The solver automatically computes the time-step sizes required to precisely integrate the reaction equations. Use of this modular OS approach for solving the reactive transport problem facilitates representation of different contaminant transport systems through a set of pre-programmed reaction packages. Furthermore, other user-defined reaction kinetics may also be easily incorporated into the simulator as run-time libraries.

Numerical Solution Procedure...

![Numerical Solution Diagram](image)

Figure 1. Block Diagram Illustrating the Numerical Solution Scheme
INPUT/ OUTPUT DATA STRUCTURE

Since the RT3D code evolved from the MT3D code, the input data structure of RT3D is very similar to the MT3D input data structure. The following sections discuss only the differences between the RT3D and MT3D input data files. It is assumed that the user is familiar with the MT3D input data structure given in Zheng (1990). Example RT3D data sets are given in a later section.

Differences between RT3D and MT3D Input Data

Basic Transport Package (BTN) File

In the RT3D-BTN file, information regarding the initial and boundary conditions of various mobile and immobile species should be defined. Two new variables, “ncomp” and “mcomp”, are used to define the type and number of species in the transport problem. The value of ncomp represents the total number of species and the value of mcomp represents the number of mobile species. The difference between the two values (ncomp - mcomp) represents the number of immobile species in the problem. It is important to note that all immobile species should be defined in the end. For example, if one wants to simulate the reactive transport of dissolved hydrocarbon, sorbed hydrocarbon, dissolved oxygen, and attached bacteria, assign species numbers 1 and 2 for dissolved hydrocarbon and oxygen, and assign the numbers 3 and 4 for sorbed hydrocarbon and bacteria. In this example, ncomp should be set to 4 and mcomp should be set to 2.

To implement appropriate multi-species changes to the MT3D-BTN file, the record A3 (described on page 6-10 of the MT3D manual) must be modified. The differences between MT3D- and RT3D-BTN files are given below:

<table>
<thead>
<tr>
<th>CODE</th>
<th>RECORD</th>
<th>INPUTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT3D</td>
<td>A3</td>
<td>NLAY,NROW,NCOL,NPER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Format 4I10)</td>
</tr>
</tbody>
</table>
The second change involves assignment of initial conditions. In the RT3D-BTN file, “ncomp” number of starting concentration arrays should be specified to define the initial condition of all species. To implement this, the record A13 (described on page 6-13 of the MT3D manual) must be modified:

CODE	**RECORD**	**INPUTS**
MT3D	A13	SCONC
	Format: RARRAY	

```
RT3D A13 SCONC
Format: RARRAY
```

SCONC(1)
SCONC(2)
SCONC(3)…. So on… until SCONC(ncomp)
Format for each array: RARRAY

All mobile species starting concentration arrays should be described first, followed by the immobile species starting concentration arrays.

Source-Sink Mixing (SSM) File

In the RT3D source sink-mixing (SSM) package, multi-species concentration information should be defined by inputting the CRCH array “mcomp” number of times, one species at a time. The same procedure must be repeated for the evapotranspiration concentration arrays. This accomplished by modifying the records D4 and D6.

CODE	**RECORD**	**INPUTS**
MT3D	D4	CRCH
	Format: RARRAY	
RT3D	D4	CRCH(1)
	Format: RARRAY	
CRCH(2)
Format: RARRAY

CRCH(3)
Format: RARRAY. Similarly, repeat up to CRCH(mcomp), for “mcomp” number of times, to define all mobile species concentrations that enter through recharge.

MT3D D6 CEVT
Format: RARRAY

RT3D D6 CEVT(1)
Format: RARRAY

CEVT(2)
Format: RARRAY

CEVT(3)
Format: RARRAY. Similarly, repeat up to CEVT(mcomp), for “mcomp” number of times, to define all mobile species concentrations that escape via evapotranspiration.

To specify multi-species concentration information at point-sources/sinks, such as wells, rivers, and drains, concentrations of “mcomp” number of species must be defined next to the source type (ITYPE) entry. To implement this change, the record D8 must be modified.

MT3D D8 KSS, ISS, JSS, CSS, ITYPE
Format: I10, I10, I10, F10.0, I10

RT3D D8 KSS, ISS, JSS, CSS(1), ITYPE, CSS(1), CSS(2), CSS(3), CSS(4)… CSS(mcomp) to define mcomp number of mobile species concentrations. Note that
CSS(1) is input twice; this is done to ensure backward compatibility with the MT3D code.

Format: Free Format

In this version of RT3D, a new point source/sink boundary condition, designated as the constant-concentration condition, can be assigned by setting ITYPE = -1. This boundary condition should be used if it is necessary to assign constant concentrations only to a selected number of species. When using ITYPE = -1, assign concentration values to a desired set of constant concentration species, and assign negative values (dummy values) for all other species. The negative value is a flag used by RT3D to skip assigning the constant-concentration condition. Note that the present version of GMS_2.1 (April 1998), does not support this new boundary condition.

Using the source-sink option, injection wells are often used to simulate contaminant release (mass discharge) from a source into an aquifer. This is a reasonable approximation for single species transport if the amount of water injected into the aquifer does not alter the flow field. However, for multi-species simulations, additional care should be exercised to maintain the injection rate at a minimum level. This is because, at the discharge points (i.e., at the hypothetical injection wells), the concentrations of species other than the primary contaminant are usually assumed to be zero; and this may introduce dilution effects in the secondary plumes. For example, if a TCE source is created using a well, then the concentration of TCE degradation products, such as DCE and VC, will be assumed to be zero in the injected water. If the flow rate is high, this may lead to artificial dilution effects for the DCE and VC plumes locally, in the vicinity of the injection well. Maintaining low well-flow rates will minimize this dilution effect.

RT3D Reaction (RCT) File

The input data structure of the RT3D-RCT file is completely different from the MT3D-RCT data structure. This is because the MT3D code uses an explicit solution scheme to solve a first-order decay equation, whereas RT3D uses an implicit solution scheme to
solve a number of coupled reaction equations. The data structure of the *RT3D-RCT* file is described below:

E1: Record: ISOTHM, IREACT, NCRXNDATA, NVRXNDATA, ISOLVER
Format: (5I10)
ISOTHM = 1, Linear adsorption isotherm is simulated
= 2, Freundlich adsorption isotherm is simulated
= 3, Langmuir adsorption isotherm is simulated
= 0, no sorption is simulated
IREACT = if positive, it indicates the reaction module number
= 0, no reaction is simulated (tracer transport)
NCRXNDATA = number of constant reaction parameter values
NVRXNDATA = number of variable reaction parameter arrays
ISOLVER = Set to 1 to select the implicit solver option or 0 to select no
the solver option. The no solver option should be used only
for the instantaneous reaction modules 1 and 2. The
implicit solver is the only option currently available for
solving other kinetic reaction modules.

Note: NCRXNDATA defines the number of reaction parameters that are constant, and
NVRXNDATA defines the number of reaction parameters that are spatially variable.

E2:
ARRAY: RHOB(NLAY) (one value for each layer)
READER: RARRAY

RHOB is the bulk density of the porous medium [ML\(^{-3}\)].
Units used for defining bulk density and adsorption coefficient values should be
consistent to yield a dimensionless retardation parameter.

(Enter E3, if ISOTHM > 0)

E3:
ARRAY: SP1(NLAY) (one value for each layer)
(Then, repeat SP1 array for each mobile component)
READER: RARRAY
SP1 is the first sorption constant. For linear sorption, SP1 is the distribution coefficient $K_d [L^3 M^{-1}]$. Other details are described in the MT3D manual.

(Enter E4, if ISOTHM > 0)

E4: ARRAY: SP2(NLAY) (one value for each layer)

(Then, repeat SP2 arrays for each mobile component)

READER: RARRAY

SP2 is the second sorption constant. Other details are described in the MT3D manual.

(Enter E5, if ISOLVER = 1)

E5: ARRAYS: atol(ncomp), rtol(ncomp)

Format: Free format, two entries per line; total number of Entries should be equation to “ncomp”.

The tolerance parameters atol and rtol (for absolute and relative tolerance) are used by the differential equations solver to control convergence error while solving the reaction model. The differential equation solver will attempt to control a vector $e = e(i)$, which defines estimated local error (or convergence level) in the variable $y(i)$ according to the inequality: max-norm of $[e(i)/ewt(i)]$ is less than or equal to 1.0. Here, $ewt = (ewt(i))$ is a vector of positive error weights and is computed using the formula: $ewt(i) = rtol(i) \times \text{abs}(y(i)) + atol(i)$. The following rule of thumb may be used to set atol and rtol values: if m is the number of significant digits required in the solution component $y(i)$, set $rtol(i) = 10^{(m+1)}$ and set $atol(i)$ to a small value at which the absolute value of $y(i)$ is essentially insignificant. Note that the values of rtol and atol should always be non-negative.

(Enter E6, if IREACT > 0)

Input all the constant reaction parameter values (number of entries must be equal to NCRXNDATA); the values will be stored in a variable RC(NCRXNDATA) which will be used in the user-defined reaction module and in other pre-defined reaction modules.
E6: ARRAY: RC(NCRXNDATA)
Format: Free format, one entry per line, with a total of NCRXNDATA number of entries. RC(NCRXNDATA) is the one-dimensional array that stores all constant (spatially invariable) reaction parameters. The type of parameters stored in this array will depend on the reaction model used in the simulation.

Input the variable reaction parameters (number of arrays must be equal to NVRXNDATA); the parameters will be stored in a variable VRC(NCOL, NROW, NLAY, NVRXNDATA) which will be used in the user-defined reaction module and in other pre-defined reaction modules.

E7: ARRAY: VRC(NCOL,NROW) (one array for each layer)
(Then, repeat VRC for NVRXNDATA number of times)
READER: DPRARRAY (a new array reader which is exactly similar to the reader RARRAY, but with double precision).

Note that VRC(NCOL,NROW,NLAY,NVRXNDATA) is a four-dimensional array that stores all spatially variable reaction kinetic parameters.

RT3D Super File

The RT3D code uses a super file (typically with an extension “*.rts”) to define all input data file names, specie names, and reaction constant names. The file format and an example are given below:

File Format
RT3DSUP /* File type identifier */
BTN "filename.btn" /* The Basic Transport package file */
ADV "filename.adv" /* The Advection package file */
DSP "filename.dsp" /* The Dispersion package file */
SSM "filename.ssm" /* The Source/Sink Mixing package file */
RCT "filename.rct" /* The Chemical Reaction package file */
FLO "filename.hff" /* The MODFLOW head and flow file */
CHK "flag" /* Flag for output of heads & flows (T or F) */
OUT "filename.out"/* The standard output file */
CON "filename.con" /* Binary concentration output files for GMS post processing */
Note: filename001.con, filename002.con, etc will be automatically created. UCN file users should use filename001.ucn, filename002.ucn.. files.

DSS “filename.dss” /* Concentration data set super file for GMS */
MAS “filename.mas” /* The standard mass balance file */
SPC “new_species_name1” specie_ID, specie_type
SPC “new_species_name2” specie_ID, specie_type
(Repeat the SPC card for all ncomp number of species. Integer specie_ID is a numerical identifier for species; start with 1 and number up to ncomp. Integer specie_type can be either 1 or 0; 1 means mobile specie and 0 means immobile specie. Note that all the mobile species should be named and numbered first before including any immobile species).

Example Data File
RT3DSUP
BTN “test.btn”
ADV “test.adv”
DSP “test.dsp”
SSM “test.ssm”
RCT “test.rct”
FLO “test.hff”
CHK Y
OUT “test.out”
CON “test.con”
DSS “test.dss”
MAS “test.mas”
SPC “HC” 1 1
SPC “Oxy” 2 1
SPC “HC_adsorb” 3 0
SPC “Bacteria” 4 0

Note: in this example, HC_adsorb (adsorbed-phase hydrocarbon) and Bacteria (attached-phase bacteria) are immobile species and hence are defined as the last two species.

Details of RT3D Output Files

Similar to MT3D, RT3D will output a standard output file and mass-budget files. RT3D will also write the following sets of concentration output files:

Filenamexxx.ucn: unformatted concentration files; where “xxx” is the component (or specie) number. For example, if “test” is the name of the file then, test001.ucn, test002.ucn, etc. will be the output concentration files).

Filenamexxx.con: data stored in this file is identical to the data in the ucn file; however, these files are written in a binary format that can be directly imported into GMS 2.1 for post-processing.
Details of Reaction Modules available in RT3D 1.0

The RT3D code always requires a reaction module to define the problem-specific reactions (i.e., how the contaminants react with each other and with the subsurface). In RT3D (v1.0), seven preprogrammed reaction modules and a user-defined reaction module are available. The following sections describe the details of all the reaction modules.

Module 1: Instantaneous Aerobic Decay of BTEX

Purpose: To simulate aerobic degradation of BTEX using an instantaneous reaction model. The reactions simulated are similar to those simulated by BIOPLUME-II (Rifai et al., 1987); also see Clement et al. (1998) for a comparison of results based on the RT3D and bioplume codes.

Reaction algorithm: This module simulates the instantaneous biodegradation of fuel hydrocarbons under aerobic conditions. The overall aerobic reaction stoichiometry for a fuel hydrocarbon compound (e.g. benzene) can be written as:

\[\text{C}_6\text{H}_6 + 7.5\text{O}_2 \rightarrow 6\text{CO}_2 + 3\text{H}_2\text{O} \]

The transport equations solved in this model are:

\[R_{HC} \frac{\partial[H \text{C}]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_y \frac{\partial[H \text{C}]}{\partial x_j} \right) + \frac{\partial}{\partial \phi} \left(v_i[H \text{C}] \right) + q_i[H \text{C}]_a + r_{HC} \]

RT3Dxxx.mas: mass balance summary files; a brief caveat: the mass balance summaries for immobile species are not yet complete (under development); therefore, ignore the massbalance results reported for all immobile species.

Except for the GMS-specific Filenamexxx.con files, the format and structure of all other output files are identical to those used in MT3D.
\[R_{O_2} \frac{\partial [O_2]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{0i} \frac{\partial [O_2]}{\partial x_j} \right) + \frac{q_i}{\Phi} [O_2]_b + r_{O_2} \]

(11)

Where \(r_{HC} \) and \(r_{O2} \) are the removal rates of hydrocarbon and oxygen, respectively.

At each time step, an instantaneous reaction algorithm is used to model the removal rates. According to this algorithm, either hydrocarbon or oxygen (whichever is limiting) will be reduced to zero within a grid cell, after a reaction time step. The reaction algorithm is written as (Rifai et al. 1988):

\[H(t + 1) = H(t) - O(t) / F \quad \text{and} \quad O(t + 1) = 0, \quad \text{when} \quad H(t) > O(t) / F \]

\[O(t + 1) = O(t) - H(t) \cdot F \quad \text{and} \quad H(t + 1) = 0, \quad \text{when} \quad O(t) > H(t) \cdot F \]

where \(t \) refers to a particular time step and \(F \) is the stoichiometric ratio.

Details of the Reaction Module:

Total number of components (ncomp) = 2

Mobile components (mcomp) = 2

The component names are: BTEX and Oxygen

NCRXNDATA = 1; NVRXNDATA = 0

Constant 1: Stoichiometric ratio \(F \) (oxygen to BTEX) = 3.072 (g \(O_2 \)/g \(C_6H_6 \))

Note: By changing the value of \(F \) instantaneous reaction between any other chemicals can be simulated using this module.

Module 2: Instantaneous Degradation of BTEX using Multiple Electron Acceptors

Purpose: To simulate instantaneous biodegradation of BTEX via five different degradation pathways: aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis.
Reaction Algorithm: The reaction algorithm used is similar to the one used in Model #1, except that five different instantaneous degradation pathways are assumed in this model (Rifai et al., 1995; Wiedemeier et al., 1996). The biochemical reactions considered are (benzene is used as an example):

\[C_6H_6 + 7.5O_2 \rightarrow 6CO_2 + 3H_2O \]
\[6NO^- + 6H^+ + C_6H_6 \rightarrow 6CO_2 + 6H_2O + 3N_2 \]
\[30Fe(OH)_3 + 60H^+ + C_6H_6 \rightarrow 6CO_2 + 78H_2O + 30Fe^{2+} \]
\[3.75SO_4^{2-} + 7.5H^+ + C_6H_6 \rightarrow 6CO_2 + 3H_2O + 3.75H_2S \]
\[C_6H_6 + 4.5H_2O \rightarrow 2.25CO_2 + 3.75CH_4 \]

The reactions are assumed to occur in a sequential order, as listed above.

Since concentrations of \(Fe^{3+} \) and \(CO_2 \) cannot be measured under normal field conditions (Wiedemeier et al., 1995), these terms were replaced with “assimilative capacity terms” (for iron reduction and methanogenesis) defined as:

\[[Fe^{3+}] = [Fe^{2+}_{\text{max}}] - [Fe^{2+}] \]
\[[CO_2] = [CH_4_{\text{max}}] - [CH_4] \]

where \([Fe^{2+}_{\text{max}}]\) and \([CH_4_{\text{max}}]\) are the maximum field-measured levels (or expected levels) of \(Fe^{2+} \) and \(CH_4 \), respectively, and represent the aquifer’s total capacity for iron reduction and methanogenesis.

The coupled transport equations solved in this model are:

\[R_{HC} \frac{\partial [HC]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [HC]}{\partial x_j} \right) \cdot \frac{\partial (V_i[HC])}{\partial x_i} + q_h[HC]_h + r_{HC} \]

21
All removal terms “r” are computed using an instantaneous reaction model similar to the aerobic instantaneous model used in model #1. The following general instantaneous reaction algorithm is used to utilize different electron acceptors sequentially:

\[
D(t+1) = D(t) - A(t)/F \quad \text{and} \quad A(t+1) = 0, \quad \text{when} \quad D(t) > A(t)/F
\]

\[
A(t+1) = A(t) - D(t) \cdot F \quad \text{and} \quad D(t+1) = 0, \quad \text{when} \quad A(t) > D(t) \cdot F
\]

where, t refers to a particular time step, D is the electron donor concentration, A is the electron acceptor concentration, and F is the stoichiometric ratio.

\[
R_{O_2} \frac{\partial [O_2]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [O_2]}{\partial x_j} \right) - \frac{\partial (v_i [O_2])}{\partial x_i} + \frac{q_{s}}{ \phi } [O_2] + r_{O_2}
\]

\[
R_{NO_3} \frac{\partial [NO_3]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [NO_3]}{\partial x_j} \right) - \frac{\partial (v_i [NO_3])}{\partial x_i} + \frac{q_{s}}{ \phi } [NO_3] + r_{NO_3}
\]

\[
R_{Fe^{2+}} \frac{\partial [Fe^{2+}]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [Fe^{2+}]}{\partial x_j} \right) - \frac{\partial (v_i [Fe^{2+}])}{\partial x_i} + \frac{q_{s}}{ \phi } [Fe^{2+}] + r_{Fe^{2+}}
\]

\[
R_{SO_4} \frac{\partial [SO_4]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [SO_4]}{\partial x_j} \right) - \frac{\partial (v_i [SO_4])}{\partial x_i} + \frac{q_{s}}{ \phi } [SO_4] + r_{SO_4}
\]

\[
R_{CH_4} \frac{\partial [CH_4]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [CH_4]}{\partial x_j} \right) - \frac{\partial (v_i [CH_4])}{\partial x_i} + \frac{q_{s}}{ \phi } [CH_4] + r_{CH_4}
\]
Constant 2: Max value of CH₄
The other five constants are fixed values (the values assume concentrations in mg/L):
Constant 3: stoichiometric ratio of oxygen (consumed) to BTEX = 3.072
Constant 4: stoichiometric ratio of nitrate (consumed) to BTEX = 4.76
Constant 5: stoichiometric ratio of Fe²⁺ (produced) to BTEX = 21.45
Constant 6: stoichiometric ratio of sulfate (consumed) to BTEX = 4.61
Constant 7: stoichiometric ratio of methane (produced) to BTEX = 0.7705

Module 3: Kinetic-limited degradation of BTEX using multiple electron acceptors

Purpose: To simulate kinetic-limited biodegradation of BTEX via five different degradation pathways: aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis (Clement et al. 1997a).

Reaction Algorithm: The reactive transport model considered here describes the transport and rate-limited degradation of hydrocarbon through five different degradation pathways. The stoichiometry of the degradation reactions is described by equations (12) to (16). The form of transport equations solved by this model is described by equations (19) to (24). However, in this model, a kinetic reaction framework is used to model the reaction terms.

In the kinetic model, the rate of hydrocarbon decay is assumed to be directly proportional to hydrocarbon concentration (i.e. the decay is a first-order reaction). A Monod-type term is used to account for the presence (or absence) of various electron acceptors, and an inhibition model is used to simulate the sequential electron acceptor utilization process. The kinetic expressions used for modeling hydrocarbon decay are:

\[r_{\text{HC},O_2} = -k_{O_2}[\text{HC}] \frac{[O_2]}{K_{O_2} + [O_2]} \]

(27)
\[r_{\text{HC,NO}_3} = \frac{-k_{\text{NO}_3} [\text{HC}]}{K_{\text{NO}_3} + [\text{NO}_3]} \frac{[\text{NO}_3]}{K_{\text{i,NO}_3} + [\text{O}_2]} \] (28)

\[r_{\text{HC,Fe}^{3+}} = -k_{\text{Fe}^{3+}} [\text{HC}] \frac{[\text{Fe}^{3+}]}{K_{\text{Fe}^{3+}} + [\text{Fe}^{3+}]} \frac{K_{\text{i,FeO}}}{K_{\text{i,Fe}^{3+}} + [\text{Fe}^{3+}]} \] (29)

\[r_{\text{HC,SO}_4} = -k_{\text{SO}_4} [\text{HC}] \frac{[\text{SO}_4]}{K_{\text{SO}_4} + [\text{SO}_4]} \frac{K_{\text{i,SO}_4}}{K_{\text{i,SO}_4} + [\text{NO}_3]} \] (30)

\[r_{\text{HC,CH}_4} = -k_{\text{CH}_4} [\text{HC}] \frac{[\text{CO}_2]}{K_{\text{CH}_4} + [\text{CO}_2]} \frac{K_{\text{i,CO}_2}}{K_{\text{i,CH}_4} + [\text{Fe}^{3+}]} \frac{K_{\text{i,SO}_4}}{K_{\text{i,SO}_4} + [\text{SO}_4]} \] (31)

where \(r_{\text{HC,O}_2} \) is the hydrocarbon destruction rate utilizing oxygen, \(r_{\text{HC,NO}_3} \) is the destruction rate utilizing nitrate, \(r_{\text{HC,Fe}^{3+}} \) is the destruction rate utilizing \(\text{Fe}^{3+} \) (or producing \(\text{Fe}^{2+} \)), \(r_{\text{HC,SO}_4} \) is the destruction rate utilizing sulfate, \(r_{\text{HC,CH}_4} \) is the destruction rate via methanogenesis, \([\text{O}_2]\) is oxygen concentration \([\text{ML}^{-3}]\), \(k_{\text{O}_2} \) is the first-order degradation rate constant for hydrocarbon utilizing oxygen as the electron acceptor \([\text{T}^{-1}]\), \(K_{\text{O}_2} \) is the Monod half-saturation constant \([\text{ML}^{-3}]\), \(K_{\text{i,O}_2} \) is the oxygen inhibition constant \([\text{ML}^{-3}]\); and similar nomenclature is used for all subsequent reactions. Note that by setting the half-saturation constant to an arbitrarily small value, we simulate zero-order dependency with respect to the electron donor and thus, a first-order dependency with respect to hydrocarbon. The inhibition constants are typically set to some arbitrarily small values to simulate the sequential electron acceptor utilization process.

Since the concentration of \(\text{Fe}^{3+} \) and \(\text{CO}_2 \) cannot be measured under normal field conditions (Wiedemeier et al., 1995), these concentration terms were replaced with “assimilative capacity terms” (for iron reduction and methanogenesis) defined as:
where \([\text{Fe}^{2+}]_{\text{max}}\) and \([\text{CH}_4\text{,max}]\) are the maximum levels (or expected levels) of \(\text{Fe}^{2+}\) and \(\text{CH}_4\), respectively, measured in the field, and represent the aquifer’s total capacity for iron reduction and methanogenesis. Since methane production is a fermentation process, there is no external electron transfer process involved in this reaction step. Therefore, the concentration term for \(\text{CO}_2\), used in (31), should be considered as a hypothetical term that simply indicates the methanogenic capacity (MC) of the aquifer. Similarly, the concentration term for \(\text{Fe}^{3+}\), used in (29), should also be considered as a hypothetical term representing the iron reduction capacity (bioavailable iron) of the aquifer. Using transformation equations (32) and (33), the unquantifiable concentration levels of the species \(\text{Fe}^{3+}\) and \(\text{CO}_2\) (or MC) are related back to field-measurable \(\text{Fe}^{2+}\) and \(\text{CH}_4\) concentrations.

The total rate of hydrocarbon destruction via all decay processes is written as:

\[
\begin{align*}
\text{r}_{\text{HC}} &= \text{r}_{\text{HC,CO}_2} + \text{r}_{\text{HC,NO}_3} + \text{r}_{\text{HC,Fe}^{2+}} + \text{r}_{\text{HC,SO}_4} + \text{r}_{\text{HC,CH}_4} \\
\end{align*}
\]

(34)

Rates of electron acceptor utilization (or product formation) are given by the rates of hydrocarbon destruction multiplied by an appropriate yield coefficient \((Y)\):

\[
\begin{align*}
\text{r}_{\text{O}_2} &= Y_{\text{O}_2/\text{HC}} \text{r}_{\text{HC,CO}_2} \\
\text{r}_{\text{NO}_3} &= Y_{\text{NO}_3/\text{HC}} \text{r}_{\text{HC,NO}_3} \\
\text{r}_{\text{Fe}^{2+}} &= -Y_{\text{Fe}^{2+}/\text{HC}} \text{r}_{\text{HC,Fe}^{2+}} \\
\text{r}_{\text{SO}_4} &= Y_{\text{SO}_4/\text{HC}} \text{r}_{\text{HC,SO}_4} \\
\text{r}_{\text{CH}_4} &= -Y_{\text{CH}_4/\text{HC}} \text{r}_{\text{HC,CH}_4}
\end{align*}
\]

(35-39)
Assuming that BTEX represents all fuel contaminants, the yield value for $Y_{O_2/HC}$ is 3.14, $Y_{NO_3/HC}$ is 4.9, $Y_{Fe^{2+}/HC}$ is 21.8, $Y_{SO_4/HC}$ is 4.7, and $Y_{CH_4/HC}$ is 0.78 (Wiedemeier et al., 1995). It should be noted that the kinetic model described above assumes that degradation reactions occur only in the aqueous phase, which is a conservative assumption.

Details of the Reaction Module:

Total number of components (ncomp) = 6
Mobile components (mcomp) = 6
The component names are: BTEX, Oxygen, Nitrate, Iron (Fe$^{2+}$), Sulfate, Methane

NCRXNDATA = 21 or 0; NVRXNDATA = 0 or 21.
Constant 1: Max value of Fe$^{2+}$ observed in the field (Max_Fe$^{2+}$)
Constant 2: Max value of Methane observed in the field (Max_Methane)
Constant 3: Hydrocarbon decay rate via aerobic process (k_{O_2})
Constant 4: Hydrocarbon decay rate via denitrification (K_{NO3})
Constant 5: Hydrocarbon decay rate via iron reduction ($k_{Fe^{3+}}$)
Constant 6: Hydrocarbon decay rate via sulfate reduction (k_{SO4})
Constant 7: Hydrocarbon decay rate via methanogenesis (k_{CH4})
Constant 8: Half saturation constant for oxygen ($K_{O_2} = 0.5$ mg/L)
Constant 9: Half saturation constant for nitrate ($K_{NO3} = 0.5$ mg/L)
Constant 10: Half saturation constant for Fe$^{3+}$ ($K_{Fe^{3+}} = 0.5$ mg/L)
Constant 11: Half saturation constant for sulfate ($K_{SO4} = 0.5$ mg/L)
Constant 12: Half saturation constant for methane ($K_{CH4} = 0.5$ mg/L)
Constant 13: Inhibition coefficient for oxygen reaction ($K_{i_{O_2}} = 0.001$ mg/L)
Constant 14: Inhibition coefficient for nitrate reaction ($K_{i_{NO3}} = 0.001$ mg/L)
Constant 15: Inhibition coefficient for Fe$^{3+}$ reaction ($K_{i_{Fe^{3+}}} = 0.001$ mg/L)
Constant 16: Inhibition coefficient for sulfate reaction ($K_{i_{SO4}} = 0.001$ mg/L)
Constant 17: Oxygen yield ($Y_{O2/HC} = 3.14$)
Constant 18: Nitrate yield ($Y_{NO3/HC} = 4.9$)
Constant 19: Iron (Fe$^{2+}$) production yield ($Y_{Fe^{2+}/HC} = 21.8$)
Constant 20: Sulfate yield ($Y_{SO_4/HC} = 4.7$)
Constant 21: Methane production yield ($Y_{CH_4/HC} = 0.78$)
All yield values are based on mg/L basis.

Module 4: Rate-limited Sorption Reactions

Purpose: To simulate mass-transfer-limited sorption reactions. A detailed example using this reaction model is discussed in Clement et al. (1998b).

Reaction Algorithm: When sorption is assumed to be rate-limited, it is necessary to track contaminant concentrations in both mobile (groundwater) and immobile (soil) phases. Following Haggerty and Gorelick’s (1994) approach, the fate and transport of a sorbing solute in aqueous and soil phases can be predicted using the following transport equations:

\[
\frac{\partial C}{\partial t} + \rho \frac{\partial \tilde{C}}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial C}{\partial x_j} \right) \frac{\partial}{\partial x_i} (v_i C) + \frac{q_s}{\phi} C_s + \frac{\rho}{\phi} \frac{\partial \tilde{C}}{\partial t} = \xi \left(\frac{C - \tilde{C}}{\lambda} \right)
\]

(40)

where C is the concentration of contaminant in the mobile-phase [ML$^{-3}$], \tilde{C} is the concentration of the contaminant in the immobile phase (mass of the contaminants per unit mass of porous media, [MM$^{-1}$]), ρ is the bulk density of the soil matrix, ϕ is the soil porosity, ξ is the first-order, mass-transfer rate parameter [T$^{-1}$], and λ is the linear partitioning coefficient [L3M$^{-1}$].

The mass-transfer model discussed above was set-up as an RT3D reaction module (one mobile species and one immobile species). After reaction-operator splitting, the reaction model for the problem reduces to:

\[
\frac{dC}{dt} = -\xi \left(C - \frac{\tilde{C}}{\lambda} \right)
\]

(42)
\[
\frac{d\tilde{C}}{dt} = \frac{\phi \xi}{\rho} \left(C - \frac{\tilde{C}}{\lambda} \right) \tag{43}
\]

These two differential equations are coded into the rate-limited reaction module.

Details of the Reaction Module:
Total number of components (ncomp) = 2
Mobile components (mcomp) = 1
The component names are: Aqueous_conc, Solid_conc
NCRXNDATA = 2 or 0; NVRXNDATA = 0 or 2
Constant 1 = Mass transfer coefficient, \(\xi\)
Constant 2 = Linear partitioning coefficient, \(\lambda\) (same as \(K_d\))

Module 5: Double Monod Model

Purpose: To simulate the reaction between an electron donor and an electron acceptor mediated by actively growing bacteria cells living in both aqueous and soil phases. Applications of different types of double-Monod models are discussed by: Molz et al. (1986); Rifai and Bedient (1990); Tayler and Jaffe (1990); Clement et al. (1996a); Clement et al. (1996b); Reddy et al. (1997); Clement et al. (1997b); and Clement et al. (1998).

Reaction Algorithm: Assuming an equilibrium model for sorption and a Monod kinetic model for biological reactions (Rifai and Bedient 1990; Clement et al. 1996a), the fate and transport of an electron donor (hydrocarbon, for example) in a multi-dimensional saturated porous media can be written as:

\[
R_d \frac{\partial[D]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial[D]}{\partial x_j} \right) - \frac{\partial}{\partial x_i} \left(v_i[D] \right) + \frac{q_s}{\phi} \left[D_s\right] - \\
\mu_m \left(\left[D\right] + \frac{\rho x}{\phi} \left[D\right] \frac{[A]}{K_D + [D]} \frac{[A]}{K_A + [A]} \right)
\]
where \([D]\) is the electron donor concentration in the aqueous phase \([\text{ML}^{-3}]\), \([D_s]\) is the donor concentration in the sources/sinks \([\text{ML}^{-3}]\), \([X]\) is the aqueous phase bacterial cell concentration \([\text{ML}^{-3}]\), \(\bar{X}\) is the solid-phase cell concentration (mass of bacterial cells per unit mass of porous media \([\text{MM}^{-1}]\)), \([A]\) is the electron acceptor concentration in the aqueous phase \([\text{ML}^{-3}]\), \(R_H\) is the retardation coefficient of the hydrocarbon, \(K_D\) is the half saturation coefficient for the electron donor \([\text{ML}^{-3}]\), \(K_A\) is the half saturation coefficient for the electron acceptor \([\text{ML}^{-3}]\), and \(\mu_m\) is the contaminant utilization rate \([\text{T}^{-1}]\). The model assumes that the degradation reactions occur only in the aqueous phase, which is usually a conservative assumption.

The fate and transport of the electron acceptor (oxygen, for example) can be modeled using the equation:

\[
R_A \frac{d[A]}{dt} = \frac{\partial}{\partial x_i} \left(D \frac{\partial [A]}{\partial x_i} \right) - \frac{\partial}{\partial x_i} \left(v_i [A] \right) + \frac{q_i}{\phi} [A_s] - \\
Y_{A/D} \mu_m [X] + \frac{\rho \bar{X}}{\phi} \left(\frac{[D]}{K_D + [D]} \right) \left(\frac{[A]}{K_A + [A]} \right)
\]

(45)

where \(Y_{A/D}\) is the stoichiometric yield coefficient, and \(R_A\) is the retardation coefficient of the electron acceptor.

The fate and transport of bacteria in the aqueous phase can be described using the equation:

\[
\frac{d[X]}{dt} = \frac{\partial}{\partial x_i} \left(D \frac{\partial [X]}{\partial x_i} \right) - \frac{\partial}{\partial x_i} \left(v_i [X] \right) + \frac{q_i}{\phi} [X_s] - K_{\text{att}} [X] + \frac{K_{\text{det}} \rho \bar{X}}{\phi} + \\
Y_{X/D} \mu_m [X] \left(\frac{[D]}{K_D + [D]} \right) \left(\frac{[A]}{K_A + [A]} \right) - K_e [X]
\]

(46)

where \(K_{\text{att}}\) is the bacterial attachment coefficient \([\text{T}^{-1}]\), \(K_{\text{det}}\) is the bacterial detachment coefficient \([\text{T}^{-1}]\), and \(K_e\) is the endogenous cell death or decay coefficient \([\text{T}^{-1}]\).

The growth of attached-phase bacteria can be described using an ordinary differential equation of the form:
The conceptual model representing soil bacteria, which is implicitly assumed in the above formulation, is similar to the macroscopic model described by Baveye and Valocchi (1989); no specific microscopic biomass structure is assumed, and diffusional limitations across biofilm are neglected. Equations (46) and (47) also assume first-order kinetic expressions to represent the exchange of bacteria cells between aqueous and solid phases (Taylor and Jaffe, 1990; Hornberger et al. 1992; Peyton et al. 1995). More recently, Reddy and Ford (1996) compared equilibrium and kinetic expressions for modeling the microbial exchange process and concluded that kinetic models provide more general descriptions. Permeability and porosity changes caused by bacterial growth are ignored in this formulation. However, if required, macroscopic models for biomass-affected porous-media properties, described in Clement et al. (1996b), may be integrated within this modeling approach.

After reaction-operator splitting, the assembled reaction terms are represented by a set of coupled, non-linear differential equations of the form:

\[
\frac{d\tilde{X}}{dt} = \frac{K_{att} \phi[X]}{\rho} - K_{det} \tilde{X} + Y_{\text{x/d}} \mu_m \tilde{X} \left(\frac{[D]}{K_D + [D]} \right) \left(\frac{[A]}{K_A + [A]} \right) - K_e \tilde{X} \tag{47}
\]

(47)

These four equations are coded into the double-Monod reaction module.
Details of the Reaction Module:
Total number of components (ncomp) = 4
Mobile components (mcomp) = 3
The component names are: ED (Electron Donor), EA (Electron Acceptor), AB (Aqueous phase mobile Bacteria), SB (Soil-phase immobile Bacteria).
NCRXNDATA = 8 or 0; NVRXNDATA = 0 or 8
Constant 1 = Specific utilization rate
Constant 2 = Monod half saturation constant for electron donor
Constant 3 = Monod half saturation constant for electron acceptor
Constant 4 = Biomass produced per unit amount of electron donor utilized, $Y_{X/D}$
Constant 5 = Electron acceptor used per unit amount of electron donor utilized, $Y_{A/D}$
Constant 6 = First-order, bacterial death or decay rate, K_{decay}
Constant 7 = First-order, bacterial attachment rate, K_{att}
Constant 8 = First-order, bacterial detachment rate, K_{det}

This module describes a general double Monod model. By setting appropriate yield and kinetic constants, users can model any type of biological systems. Kinetic constants for an aerobic system are given in Clement et al. (1998), and for an anaerobic denitrifying system are given in Clement et al. (1997b). Also see Taylor and Jaffe (1990); Hornberger et al. (1992); Zysset et al. (1994); and Reddy and Ford (1996).

Module 6: Sequential Decay Reactions

Purpose: To simulate reactive transport coupled by a series of sequential degradation reactions (up to four components). The example considered here focuses on modeling dechlorination of PCE and its daughter products under anaerobic conditions. However, this module can be used to describe any 4-component sequential decay reactions. For
more details, please refer to a PCE example problem discussed in Clement et al. (1998). Also see Wiedemeier et al. (1997).

Reaction Algorithm: Assuming first-order decay kinetics, the transport and transformation of a sequential decay chain $\text{A} \rightarrow \text{B} \rightarrow \text{C} \rightarrow \text{D}$ can be simulated by solving the following set of partial differential equations:

\[
R_A \frac{\partial [A]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [A]}{\partial x_j} \right) - \phi \left(\frac{\partial [A]}{\partial x_i} \right) + q_s [A]_h - K_A [A] \tag{52}
\]

\[
R_B \frac{\partial [B]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [B]}{\partial x_j} \right) - \phi \left(\frac{\partial [B]}{\partial x_i} \right) + q_s [B]_h - K_B [B] + Y_{B/A} K_A [A] \tag{53}
\]

\[
R_C \frac{\partial [C]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [C]}{\partial x_j} \right) - \phi \left(\frac{\partial [C]}{\partial x_i} \right) + q_s [C]_h - K_C [C] + Y_{C/B} K_B [B] \tag{54}
\]

\[
R_D \frac{\partial [D]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial [D]}{\partial x_j} \right) - \phi \left(\frac{\partial [D]}{\partial x_i} \right) + q_s [D]_h - K_D [D] + Y_{D/C} K_C [C] \tag{55}
\]

where $[A]$, $[B]$, $[C]$, and $[D]$ represent specie concentrations and Y represents different stoichiometric yield values. Note that all decay reactions in this model are assumed to occur only in the aqueous phase, which is a conservative assumption.

Using the operator split strategy, the reaction kinetics can be separated from the transport equations and written as:

\[
\frac{d[A]}{dt} = - \frac{K_A [A]}{R_A} \tag{56}
\]

\[
\frac{d[B]}{dt} = \frac{Y_{B/A} K_A [A] \cdot K_B [B]}{R_B} \tag{57}
\]

\[
\frac{d[C]}{dt} = \frac{Y_{C/B} K_B [B] \cdot K_C [C]}{R_C} \tag{58}
\]

\[
\frac{d[D]}{dt} = \frac{Y_{D/C} K_C [C] \cdot K_D [D]}{R_D} \tag{59}
\]
This module provides a general description for any 4-component sequential decay chain. However, the default values given here are specific to PCE/TCE dechlorination reactions.

Details of the Reaction Module:
Total number of components (ncomp) = 4
Mobile components (mcomp) = 4
The component names are: PCE, TCE, DCE, and VC
NCRXNDATA = 7 or 0; NVRXNDATA = 0 or 7
Constant 1 = PCE first-order degradation rate (K_A)
Constant 2 = TCE first-order degradation rate (K_B)
Constant 3 = DCE first-order degradation rate (K_C)
Constant 4 = VC first-order degradation rate (K_D)
Constant 5 = Yield, Y_B/A (Y_{tce,pce} = 0.792)
Constant 6 = Yield, Y_C/B (Y_{dce,tce} = 0.738)
Constant 7 = Yield, Y_D/C (Y_{vc,dce} = 0.644)
The yield values are on a mg/L basis; to be consistent, the user must use mg/L units for all concentrations.

Module 7: Aerobic/anaerobic Model for PCE/TCE Degradation

Purpose: To simulate degradation of PCE/TCE and their degradation products via both aerobic and anaerobic pathways.

Reaction Algorithm: The conceptual model used to model all chlorinated solvent degradation reactions, mediated by aerobic and anaerobic dechlorination processes, is described in the figure below:
Figure 2. Conceptual Model for Chlorinated Solvent Biodegradation

Assuming first-order biodegradation kinetics, transport and transformation of PCE, TCE, DCE, VC, ETH, and Cl can be simulated by solving the following set of partial differential equations:

\[
R_p \frac{\partial[PCE]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial[PCE]}{\partial x_j} \right) - \frac{\partial\left(v_i[PCE] + 3 Cl^- \right)}{\partial x_i} - K_p[PCE] \tag{60}
\]

\[
R_T \frac{\partial[TCE]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial[TCE]}{\partial x_j} \right) - \frac{\partial\left(v_i[TCE] + 3 Cl^- \right)}{\partial x_i} + \frac{q_{[TCE]} + Y_{T/P}K_p[PCE] - K_{T1}[TCE] - K_{T2}[TCE]}{\phi} \tag{61}
\]

\[
R_D \frac{\partial[DCE]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial[DCE]}{\partial x_j} \right) - \frac{\partial\left(v_i[DCE] + 2 Cl^- \right)}{\partial x_i} + \frac{q_{[DCE]} + Y_{D/T}K_T[TCE] - K_{D1}[DCE] - K_{D2}[DCE]}{\phi} \tag{62}
\]

\[
R_V \frac{\partial[VC]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial[VC]}{\partial x_j} \right) - \frac{\partial\left(v_i[VC] \right)}{\partial x_i} + \frac{q_{[VC]} + Y_{V/I}K_{D1}[DCE] - K_{V1}[VC] - K_{V2}[VC]}{\phi} \tag{63}
\]

\[
R_E \frac{\partial[ETH]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial[ETH]}{\partial x_j} \right) - \frac{\partial\left(v_i[ETH] \right)}{\partial x_i} + \frac{q_{[ETH]} + Y_{E/V}K_{V1}[VC] - K_{E1}[ETH] - K_{E2}[ETH]}{\phi} \tag{64}
\]

\[
R_C \frac{\partial[Cl]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial[Cl]}{\partial x_j} \right) - \frac{\partial\left(v_i[Cl] + 2 Cl^- \right)}{\partial x_i} + \frac{q_{[Cl]} + K_{P1}[PCE] + Y_{1/P}K_{P1}[PCE] + Y_{1/T}K_{T1}[TCE] + Y_{1/D}K_{D1}[DCE] + Y_{1/V}K_{V1}[VC] + Y_{2/T}K_{T2}[TCE] + Y_{2/D}K_{D2}[DCE] + Y_{2/V}K_{V2}[VC]}{\phi} \tag{65}
\]
where [PCE], [TCE], [DCE], [VC], [ETH], and [Cl] represent contaminant concentrations of various species [mg/L]; K_P, K_{T1}, K_{D1}, K_{V1}, and K_{E1} are first-order anaerobic degradation rates [day$^{-1}$]; K_{T2}, K_{D2}, K_{V2}, and K_{E2} are first-order aerobic degradation rates [day$^{-1}$]; R_P, R_T, R_D, R_V, R_E, and R_C are retardation factors; $Y_{T/P}$, $Y_{D/T}$, $Y_{V/D}$, and $Y_{E/V}$ are chlorinated compound yields under anaerobic reductive dechlorination conditions (their values are: 0.79, 0.74, 0.64 and 0.45, respectively); $Y_{1/C/P}$, $Y_{1/C/T}$, $Y_{1/C/D}$, and $Y_{1/C/V}$ are yield values for chloride under anaerobic conditions (their values are: 0.21, 0.27, 0.37, and 0.57, respectively); and $Y_{2/C/T}$, $Y_{2/C/D}$, and $Y_{2/C/V}$ are yield values for chloride under aerobic conditions (their values are: 0.81, 0.74, and 0.57, respectively).

These yield values are estimated from the reaction stoichiometry and molecular weights; for example, anaerobic degradation of one mole of PCE would yield one mole of TCE, therefore $Y_{T/P} = \frac{\text{molecular weight of TCE}}{\text{molecular weight of PCE}} (131.4/165.8 = 0.79)$.

Note that the reaction models presented above assume that the biological degradation reactions occur only in the aqueous phase, which is a conservative assumption.

Using the reaction operator-split strategy, the biological reaction kinetics included in the transport equations (60) to (65) are separated and assembled as a set of ordinary differential equations:

$$\frac{d[PCE]}{dt} = -\frac{K_P[PCE]}{R_P}$$ \hspace{1cm} (66)

$$\frac{dTCE}{dt} = \frac{Y_{T/P}K_P[PCE] - K_{T1}[TCE] - K_{T2}[TCE]}{R_D}$$ \hspace{1cm} (67)

$$\frac{d[DCE]}{dt} = \frac{Y_{D/T}K_T[TCE] - K_{D1}[DCE] - K_{D2}[DCE]}{R_D}$$ \hspace{1cm} (68)

$$\frac{d[VC]}{dt} = \frac{Y_{V/D}K_D[DCE] - K_{V1}[VC] - K_{V2}[VC]}{R_V}$$ \hspace{1cm} (69)

$$\frac{d[ETH]}{dt} = \frac{Y_{E/V}K_V[VC] - K_{E1}[ETH] - K_{E2}[ETH]}{R_E}$$ \hspace{1cm} (70)
\[
\frac{d[C]}{dt} = \left[Y_{1/P} K_{P1}[PCE] + Y_{1/T1} K_{T1}[TCE] + Y_{1/D1} K_{D1}[DCE] + Y_{1/V1} K_{V1}[VC] \\
+ Y_{2/T2}[TCE] + Y_{2/D2}[DCE] + Y_{2/V2}[VC] \right] / R_c
\] (71)

These five equations are coded into the reaction module #7.

Details of the Reaction Module:

The component names are: PCE, TCE, DCE, VC, ETH, and Cl

NCRXNDATA = 9 or 0; NVRXNDATA = 0 or 9

Constant 1 = Anaerobic decay rate for PCE, \(K_P \)

Constant 2 = Anaerobic decay rate for TCE, \(K_{T1} \)

Constant 3 = Aerobic decay rate for TCE, \(K_{T2} \)

Constant 4 = Anaerobic decay rate for DCE, \(K_{D1} \)

Constant 5 = Aerobic decay rate for DCE, \(K_{D2} \)

Constant 6 = Anaerobic decay rate for VC, \(K_{V1} \)

Constant 7 = Aerobic decay rate for VC, \(K_{V2} \)

Constant 8 = Anaerobic decay rate for ETH, \(K_{E1} \)

Constant 9 = Aerobic removal rate for ETH, \(K_{E2} \)

All the yield values are fixed internally; to be consistent, use mg/L units for all species concentrations.

Module 8: Under construction

Will be included in the next version.

Module 9: Under construction

Will be included in the next version.
Module 10: User-Defined Reaction Module

Purpose: To simulate reactive transport based on user-defined reaction kinetics. This is the most versatile option available in RT3D. Using this option, one can describe and solve any type of kinetic-limited reactive transport problem. The reaction information is input via a Fortran-90 subroutine, which should be compiled as a dynamic link library (DLL) using either the Microsoft Fortran Power station 4.0 or the Digital DVF Fortran compiler.

Details of the Reaction Module:
Total number of components (ncomp) are defined by the user
Mobile components (mcomp) are defined by the user
NCRXNDATA should be defined by the user
NVRXNDATA should be defined by the user.

The user-defined reactions are specified in a subroutine called `rxns(x, y, z...)` and stored in a file (say `rxns.f`). Note that a user-defined reaction subroutine must be named as `rxns()`, and it should be compiled as a DLL “rxns.DLL”. See example #2 below, and also refer to Clement and Jones (1998) for further details about the user-reaction option.

MODFLOW to be used with RT3D

The present version of RT3D uses the version of MODFLOW that is available from the GMS web site (www.ecgl.byu.edu/gms/gms.html). If the user is not using GMS as your preprocessor, he/she should manually assemble all MODFLOW input-file names into a super file to run this GMS version of MODFLOW. Here is an example for the GMS-MODFLOW super file:

```
MODSUP
IJK -y +x -z
LIST 26 “flow.out”
BAS1 1 “flow.bas”
BCF3 11 “flow.bcf”
```
If the MODFLOW input files were created by a pre-processor other than GMS, then create a super file, similar to the one described above, using an ASCII text editor and include the appropriate MODFLOW input file names. Save the data in a file, say “flow.mfs”. From a DOS window, run the MODFLOW executable downloaded from the GMS web site. The code will prompt for a superfile name. Type the filename (flow.mfs) and press enter to run MODFLOW.

EXAMPLE PROBLEMS

Two example problems are discussed below to demonstrate the use of the RT3D code. GMS users should follow the instructions in the tutorial document: RT3D Tutorials for GMS Users by Clement and Jones (1998).

Example 1: Using Reaction Module #1

Problem Statement

The problem we will be solving in this example is shown in the following figure:
The site is a 510 m × 310 m section of a confined aquifer (10 m thick) with a flow gradient from left to right (1/500m). The hydraulic conductivity of the aquifer is 50 m/day. An underground storage tank is leaking fuel hydrocarbon contaminants at 2 m3/day at a cell centered at 155m × 155m (location is shown in the figure). Concentration of hydrocarbons is 1000 mg/L and the spill may be assumed to be devoid of oxygen. Details of the aquifer hydrology and geometry are given below. The aquifer is assumed to have a uniform porosity of 0.3, longitudinal dispersivity of 10 m, and a ratio of longitudinal to transverse dispersivity of 0.3. Initial levels of hydrocarbon and oxygen in the aquifer are 0.0 and 9.0 mg/L, respectively. We will simulate a continuous spill event and compute the resulting hydrocarbon and oxygen contours after one year, using the model #1 (instantaneous, aerobic degradation model). The RT3D input files for this example problem are listed below:

Input Data Set

RT3D-super file (test1.rts)
RT3DSUP
BTN “test1.btn”
FLO "flow.hff"
ADV "test1.adv"
DSP "test1.dsp"
SSM "test1.ssm"
RCT "test1.rct"

CHK Y
OUT "test1.out"
CON "test1.con"
MAS "test1.mas"

SPC "BTEX" 1 1
SPC "Oxygen" 2 1

RT3D-BTN file (test1.btn)

<table>
<thead>
<tr>
<th>day</th>
<th>m</th>
<th>kg</th>
<th>(3013)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
0 0.300000
0 10.000000
0 10.000000
0 10.000000
0 10.000000
```

```c
RT3D-BTN file (test1.btn)
```

```
T T T F F F F
```

```
1 31 51 1 2 2
```
RT3D Output Results

After creating all necessary files, run the RT3D code. The code will ask for the input superfile name; in response, type “test1.rts”.

If you have a demo version of GMS 2.1, you can directly import test1001.con and test1002.con files to plot the contour profiles of hydrocarbon and oxygen. If you do not have GMS, use the test1001.ucn and test1001.ucn (which are output in the same format as the MT3D ucn file) in your favorite graphic software. The predicted hydrocarbon and oxygen contours after a 2-year simulation period are shown in the following figures.
Figure 4. Hydrocarbon Contours (contour levels are: 30, 20, 10, 5, and 1 mg/L)

Figure 5. Oxygen Contours (contour levels are: 1, 2, 4, and 8 mg/L)
Example 2: User-defined Reaction Module (Module # 10)

The objective of this section is to describe the steps involved in developing a user-defined module to simulate a new reactive transport system. This is the most powerful option provided in the RT3D code. Under this option, a user has the choice of defining any type of kinetic reactions. Once developed, the reaction model can be distributed to other interested modelers for application at different sites.

User-defined reaction packages can be created using one of the following two options: the dynamically linked library (DLL) option or the linked subroutine option. With the DLL option, a Fortran subroutine for the reaction package is compiled as a stand-alone DLL (using either Microsoft Fortran Powerstation or Digital Visual Fortran). The DLL is then copied to the same directory as the RT3D executable and is automatically launched by RT3D when RT3D is executed. The RT3D executable does not need to be recompiled. Because of the portability of the developed reaction package, the DLL option is the more convenient of the two options. However, the DLL option is available only on the Windows 95 or NT platforms. It is not available on Unix.

With the linked subroutine option, the code for the new reaction subroutine is compiled and linked with the rest of the RT3D source code (or with the RT3D library made for a specific computer platform). In other words, the RT3D executable must be recompiled each time the reaction package is modified. This is the only option available on Unix. Most of this section describes the pc-based DLL approach for creating user-defined reaction packages. However, special instructions for Unix users are listed at the end of this section.

Required Background

As a reaction module developer, you are considered an advanced user of the RT3D code. The required background is as follows:
• Should have a basic understanding of the functionality of the RT3D code and understand how different types of components (mobile and immobile) are mathematically described within the RT3D-modeling framework.

• Should be familiar with the input data structure of MODFLOW and RT3D codes, and must be able to create the input files with little effort.

• Should be familiar with the data structure of RT3D input files such as BTN, SSM, and RCT files.

• Should have a basic understanding of the Fortran language, and have access to Microsoft Fortran Powerstation or DEC Visual Fortran compiler (or a Unix system based Fortran-90 compiler).

• Should have some background/understanding of biochemical reaction kinetics. Note that the use of inappropriate kinetic expressions and/or kinetic constants may lead to unpredictable code behavior that are hard to debug.

• Should be familiar with contaminant transport equations and coupled nonlinear differential equations.

Problem Definition

The reaction model considered here predicts the transport and biodegradation of PCE and its degradation products, TCE, DCE, and VC. Assuming first-order sequential biodegradation kinetics, the transformation of PCE and its decay products, along with its transport, can be predicted using the following set of partial differential equations:

\[
R_{PCE} \frac{\partial [PCE]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_j \frac{\partial [PCE]}{\partial x_j} \right) \frac{\partial (v_i[PCE])}{\partial x_i} + \frac{q_e [PCE]}{\phi} - k_{tce} [PCE]
\]

\[
R_{TCE} \frac{\partial [TCE]}{\partial t} = \frac{\partial}{\partial x_i} \left(D_j \frac{\partial [TCE]}{\partial x_j} \right) \frac{\partial (v_i[TCE])}{\partial x_i} + \frac{q_e [TCE]}{\phi} + Y_{tce/pce} k_{pce} [PCE] - k_{tce} [TCE]
\]

(72)

(73)
\[
R_{DCE} \frac{\partial [DCE]}{\partial t} = \frac{\partial}{\partial X_i} \left(D_{ij} \frac{\partial [DCE]}{\partial X_j} \right) \frac{\partial (v_i [DCE])}{\partial X_i} + \frac{q_i}{\phi} [DCE]_i + Y_{DCE/TCE} K_{TCE} [TCE] - K_{DCE} [DCE]
\]

\[
R_{VC} \frac{\partial [VC]}{\partial t} = \frac{\partial}{\partial X_i} \left(D_{ij} \frac{\partial [VC]}{\partial X_j} \right) \frac{\partial (v_i [VC])}{\partial X_i} + \frac{q_i}{\phi} [VC]_i + Y_{VC/DCE} K_{DCE} [DCE] - K_{VC} [VC]
\]

where \([PCE], [TCE], [DCE],\) and \([VC]\) are the concentrations of the respective contaminants in mg/L; \(K_{PCE}, K_{TCE}, K_{DCE},\) and \(K_{VC}\) are first-order degradation rates, \(R_{PCE}, R_{TCE}, R_{DCE}, R_{VC}\) are retardation coefficients; and \(X_{TCE/PCE}, Y_{DCE/TCE},\) and \(Y_{VC/DCE}\) are yield coefficients whose values can be computed from stoichiometric relations as 0.79, 0.74, and 0.64, respectively (for example, based on the chemical reaction stoichiometry, one mole of PCE will yield one mole of TCE (or 165.8 grams of PCE will yield 131.36 grams of TCE), therefore the yield value for \(Y_{TCE/PCE} = 131.36/165.8 = 0.79\)). The kinetic model formulation presented here assumes that the biological degradation reactions occur only in the liquid phase (a more conservative assumption).

Using the reaction operator-split strategy, the biological reaction kinetics can be separated from the transport equations and assembled into a set of differential equations:

\[
\frac{d[PCE]}{dt} = - \frac{K_{PCE} [PCE]}{R_{PCE}}
\]

\[
\frac{d[TCE]}{dt} = \frac{Y_{TCE/PCE} K_{PCE} [PCE] - K_{TCE} [TCE]}{R_{TCE}}
\]

\[
\frac{d[DCE]}{dt} = \frac{Y_{DCE/TCE} K_{TCE} [TCE] - K_{DCE} [DCE]}{R_{DCE}}
\]

\[
\frac{d[VC]}{dt} = \frac{Y_{VC/DCE} K_{DCE} [DCE] - K_{VC} [VC]}{R_{VC}}
\]

The above set of coupled differential equations describes the kinetics of PCE degradation and its daughter products. Note that the model description above is identical to the reaction module #6; however, for illustration purposes, we will assume that module #6 is unavailable, and will solve the problem by means of the user-defined reaction option.
Developing a New Reaction Module

Three different methods can be used to code a new user-defined reaction package. Each method treats the reaction parameter information (values of K_{tce}, K_{pce}, etc.) in a different fashion.

1) In the first method, all reaction parameter values are explicitly assigned within the reaction module prior to compilation. This is not an efficient method, because it requires recompilation of the reaction routine whenever a reaction parameter value is modified. However, this method is recommended for testing a new reaction module with the RT3DBAT1 utility.

2) In the second method, all the reaction parameters are assumed to be constant (spatially invariable) but are assigned or modified externally, as input data, via the *.RCT file (to run RT3D) or via the “batch.in” file (to run RT3DBAT1).

3) In the third method, some or all of the reaction parameters are treated as spatially variable (i.e., a different value may be assigned to each cell). The parameter values should be externally assigned/modified as input data, via the *.RCT file. This option should be used with caution because it may require significant computer resources, in both execution time and memory.

The complete listing of the FORTRAN subroutine (using method-#1) that describes the PCE degradation reactions is given below:

```fortran
SUBROUTINE Rxns(ncomp,nvrxndata,j,i,k,y,dydt,
        poros,rhob,reta,rc,nlay,nrow,ncol,vrc)
C*Block 1:**************************************************************
c List of calling arguments
c ncomp - Total number of components
c nvrxndata - Total number of variable reaction parameters to be input via RCT file
C J, I, K - node location (used if reaction parameters are spatially variable)
c y - Concentration value of all component at the node [array variable y(ncomp)]
c dydt - Computed RHS of your differential equation [array variable dydt(ncomp)]
c poros - porosity of the node
c reta - Retardation factor [ignore dummy reta values of immobile species]
c rhob - bulk density of the node
c rc - Stores spatially constant reaction parameters (can dimension upto 100 values)
c nlay, nrow, ncol - Grid size (used only for dimensioning purposes)
c vrc - Array variable that stores spatially variable reaction parameters
C*End of Block 1**************************************************************
```
Note that the reaction subroutine listed above is organized into the following six distinct blocks of Fortran code:

1) The comment block: this block contains definitions for all the variables that are passed into the rxns routine from the RT3D main program.

2) The interface block: this block contains Fortran statements that define the types of passed variables. This block should not be altered under any circumstances.
3) The local variable definition block: this block is used to define all the new local variables that are used exclusively in the rxns subroutine.

4) The reaction parameter initialization block: this block is used to specify values for all the reaction parameters (such as K_{TCE}, K_{PCE}, etc.). Note that this initialization block is executed only when the subroutine is called for the first time.

5) Variables naming block: this block is typically used to transfer certain passed variables into meaningful names (this is used only for purposes of code clarity).

6) The differential equations block: this block is used to describe the PCE degradation reaction equations in Fortran language.

Compiling a Reaction Module

The Fortran subroutine presented above can be copied (from the pdf viewer) and pasted into an ASCII editor. Save the file as rxns_eg2a.f. Now the reaction module is ready for compilation. To create a dynamic link library (rxns.dll file), open a DOS window and go to the subdirectory where rxns_eg2a.f was saved and type the following command (this command assumes that you own a Microsoft Fortran Power Station or a DVF compiler):

```
fl32 /LD rxns_eg2a.f
```

At this stage, the compiler will display all the syntax errors. If no changes have been made to the code, there shouldn’t be any errors. If there are errors fix them and recompile the code. After a successful compilation step, the compiler will create a dll file (named as rxns_1.dll). Use the following DOS command (or use file manager) to rename the dll as rxns.dll:

```
RENAME rxns_eg2a.dll rxns.dll
```

Testing and Debugging a Reaction Module

After creating a new reaction package, it is always good practice to test its response in a batch mode (i.e., how the reactions would behave in a batch reactor). For this purpose,
we have developed a utility called RT3DBAT1. This debugging tool can read the reaction information in the rxns.dll file and simulate its behavior in a batch reactor mode.

To use RT3DBAT1, it is recommended that the user define all the kinetic reaction parameters within the rxns subroutine (i.e., using method #1). This is because the RT3DBAT1 code will not read information from RT3D input files, including the RCT file. Therefore, a new reaction module should always be developed in a format similar to method #1 (or #2) and later, if required, the kinetic parameters can be moved into an RCT file to run RT3D simulations.

Running RT3DBAT1

Whenever RT3DBAT1 is executed, the code searches for the rxns.dll file in the local subdirectory. Thus, you should copy the rxns.dll file to the RT3D-directory where the RT3DBAT1.exe and rt3d.exe files are stored by default. While developing a new reaction module, always keep the source code (rxns**.f) in a local project directory, and rename the dll as rxns.dll and move it to the RT3D subdirectory.

After you have copied the rxns.dll file into the RT3D directory, open a DOS window and run the RT3DBAT1 code from your project subdirectory. The code will query for several input data. The queries and the appropriate responses for this example problem are given below:

Input-> ncomp, no_of_timesteps, delt
Type-> INTEGER, INTEGER, REAL
4 100 10.
Input-> Initial Values of y(i)
ncomp lines - One REAL entry per line
100. <Initial PCE concentration>
0.0 <Initial TCE concentration>
0.0 <Initial DCE concentration>
0.0 <Initial VC concentration>
Do you want to change default atol & rtol: y/n
Default values are:- atol=1.0e-10 & rtol=1.0e-9
n
Input-> ncrxndata (number of reaction parameters)
Type-> INTEGER
0
You can also store these responses in a data file (say, batch.in) and use the command “rt3dbat1 < batch.in” to automatically answer all the RT3DBAT1 queries. Here is an example batch.in file:

```
4 1000 1.
100.
0.
0.
0.
y
1.0e-11 1.0e-10
1.0e-11 1.0e-10
1.0e-11 1.0e-10
1.0e-11 1.0e-10
0
```

Note that this second case, the user has chosen to set the atol and rtol values explicitly, instead of initializing them as default values. For guidelines on setting atol and rtol values, please see the “Inputs for RT3D-RCT files” section, above.

Viewing RT3DBAT1 Results

After reading the input, RT3DBAT1 will execute and create an output file called rt3dbat1.out. The output file will contain a set of white-space separated ASCII data in column format (written using the Format statement 21E15.5). For our example problem, five columns are output: Time, specie-1 (PCE), specie-2 (TCE), specie-3 (DCE), and specie-4 (VC). Use any spreadsheet software such as Excel to plot and analyze this output data. The rt3dbat1 output results for the example problem are shown in the figure below:
The results of a rt3dbat1 run should be used to: a) debug errors in reaction expressions; b) check whether the reaction expressions and parameter values are reasonable (microcosm or batch reactor data may be used to verify this); c) select appropriate values for numerical parameters atol (absolute tolerance) and rtol (relative tolerance).

Once a reaction package is tested using rt3dbat1, the dll can be used with \textit{RT3D} to run a full-fledged \textit{RT3D} simulation. However, before running \textit{RT3D} simulations, it is always useful to perform tracer transport simulations using MT3D (or using \textit{RT3D} in single-species tracer mode) and verify the results.

The flow and transport model we will be using in this tutorial exercise is identical to the one described above in example #1. A complete listing of all the \textit{RT3D} input files for this example problem is given below:

\textbf{Input Data Set}

\textbf{RT3D Super file (test2.rts)}

\begin{verbatim}
RT3DSUP
BTN "test2.btn"
FLO "flow.hff"
ADV "test2.adv"
DSP "test2.dsp"
SSM "test2.ssm"
RCT "test2.rct"
CHK Y
OUT "test2.out"
CON "test2.con"
DSS "test2.dss"
MAS "test2.mas"
SPC "PCE" 1 1
SPC "TCE" 2 1
SPC "DCE" 3 1
SPC "VC" 4 1
\end{verbatim}

\textbf{RT3D-BTN file (test2.btn)}

\begin{verbatim}
1 31 51 1 4 4
hr m kg
T T T T F F F F F F
0 10.000000
0 10.000000
0 10.000000
0 10.000000
0 0.300000
\end{verbatim}
The user should be aware of the order in which the reaction constants should be entered in the RCT package. This order depends on how the reaction package is originally coded. In this example, the order should be: \(k_{pce}, k_{ice}, k_{dce}, \) and \(k_{vc} \). Therefore, the first reaction constant entry will be transferred to \(k_{pce} \), the second one to \(k_{ice} \), and so on.
RT3D Output Results

An example of the PCE and its decay products transport problem, similar to the one presented above, was solved and the results are furnished in Clement et al. (1998b). Here we present the results only for the first (PCE) and the last (VC) components after a 3-year simulation period.

![Figure 7. PCE contours after 3 years (contour levels are: 8, 4, 2, and 1 mg/L)](image-url)
Generalized User-Defined Reaction Module

In an earlier section, we mentioned that there are three different methods available for coding the reaction subroutine. Method #1, which is the preferred method for testing and debugging a new reaction package, was discussed in detail in previous sections. Now, let’s assume that we have sufficiently tested the reaction package and are ready to distribute it to others who might be interested in using the reaction package with their own site-specific reaction parameters, without having to recompile the code. To accomplish this, we have to re-code the reaction package based on either method #2 or method #3. We will utilize method #3 (the most advanced method) for demonstration purposes. As described earlier, method #3 provides an option to define some or all of the reaction parameters as spatially variable parameters. This method also allows the user to set the values of reaction parameters via the *.RCT input file.

In this test problem, we have a total of seven reaction parameters. For illustration purposes, we will assume that five of them are constant parameters: \(K_{pce}, K_{tce}, Y_{tce,pce}, \)
$Y_{dce,tce}$, and $Y_{vc,dce}$ (set $NCRXNDATA = 5$), and two of them are spatially variable parameters: K_{dce} and K_{vc} (set $NVRXNDATA = 2$). The following Fortran listing for the reaction module (using method #3) incorporates these changes:

```fortran
SUBROUTINE Rxns(ncomp,nvrxndata,j,i,k,y,dydt,
                 poros,rhob,reta,rc,nlay,nrow,ncol,vrc)
C*Block 1:************************************************************
c List of calling arguments
c ncomp - Total number of components
c nvrxndata - Total number of variable reaction parameters to be input via RCT file
C J, I, K - node location (used if reaction parameters are spatially variable)
c y - Concentration value of all component at the node [array variable y(ncomp)]
c dydt - Computed RHS of your differential equation [array variable dydt(ncomp)]
c poros - porosity of the node
c reta - Retardation factor [ignore dummy reta values of immobile species]
c rhob - bulk density of the node
C rc - Stores spatially constant reaction parameters (can dimension upto 100 values)
c nlay, nrow, ncol - Grid size (used only for dimensioning purposes)
c vrc - Array variable that stores spatially variable reaction parameters
C*End of Block 1********************************************************
C*Block 2:************************************************************
C*    *Please do not modify this standard interface block*
C*End of block 2********************************************************
C*Block 3:************************************************************
c     *Declare your problem-specific new variables here*
c     INTEGER
DOUBLE PRECISION pce,tce,dce,vc,kpce,ktce,kdce,kvc
DOUBLE PRECISION ytcepce,ydcetce,yvcdce
C*End of block 3********************************************************
C*Block 4:************************************************************
C      *Initialize reaction parameters here, if required*
IF (First_time .EQ. 1) THEN
  kpce = rc(1)  !PCE first-order degradation rate (constant)
  ktce = rc(2)  !TCE first-order degradation rate (constant)
c  kdce is a spatially variable parameter, it is defined in block-5
  kvc is a spatially variable parameter, it is defined in block-5
  ytcepce = rc(3)
  ydcetce = rc(4)
  yvcdce = rc(5)
  First_time = 0 !reset First_time to skip this block later
END IF
C*End of block 4********************************************************
C*Block 5:************************************************************
c     *Assign or compute the values of new variables, if required*
pce = y(1)
tce = y(2)
dce = y(3)
vc = y(4)
kdc = vrc(j,i,k,1) !Spatially variable DCE decay rate
kvc = vrc(j,i,k,2) ! Spatially variable vc decay rate
C*End of block 5********************************************************
C*Block 6:************************************************************
c     *Differential Reaction Equations*
```

55
dydt(1) = -kpce*pce/reta(1)
dydt(2) = (-ktce*tce + kpce*pce*ytce_pce)/reta(2)
dydt(3) = (-kdce*dce + ktce*tce*ydce_tce)/reta(3)
dydt(4) = (-kvc*vc + kdce*dce*yvcdce)/reta(4)

RETURN
END

This subroutine is identical to the previous version except that in blocks 4 and 5, the rc() and vrc() arrays are used to initialize reaction parameters. The values of the parameters will be defined in the RT3D input file *.RCT. The RCT file (test3.rct) that should be used to run this reaction module is given below (other RT3D input files in the “test3” data set must be identical to those used in the previous data set “test2”):

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1600000.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0000000000000000e-010</td>
<td>1.0000000000000000e-009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0000000000000000e-003</td>
<td>this entry is a constant value for kpce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0000000000000000e-003</td>
<td>this entry is a constant value for ktce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.9230000000000000e+001</td>
<td>this entry is a constant value for ytce_pce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3770000000000000e+001</td>
<td>this entry is a constant value for ydce_tce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4450000000000000e+001</td>
<td>this entry is a constant value for yvc_dce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.0020000</td>
<td>this entry is an array entry for kdce</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.0010000</td>
<td>this entry is an array entry for kvc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is again emphasized that the user should be aware of the order in which the reaction constants must be entered in the RCT package. It is also important to note that in the RCT file, all constant reaction parameters should be defined first before defining the (spatially) variable reaction parameters. Short notes (which are not a part of the input data) are included in the above data set, just to emphasize this point. The results of this example should be identical to the results of the previous example.

Special Instructions for Unix users

Since the DLL option requires Microsoft or Digital Fortran compiler specific commands, this option will be obviously incompatible with Unix platforms. Therefore, whenever changes are made to a rxns.f file, Unix version of RT3DV1 executables should always be recreated by using a Fortran-90 compiler.
REFERENCES

